Hawkins 8/12/2008 10:20:40 AM Page 1 of 5

SCHOLARLY PUBLISHING OFFICE WHITEPAPER "

Specifications for implementing web feeds in DLXS
Kevin S. Hawkins

Executive Summary

SPO uses DLXS to deliver nearly all of its publications online, but this software does not
offer any functionality for web feeds (commonly called RSS feeds). The components of web
feeds are reviewed, and recommendations are made for implementing Atom 1.0 web feeds in
SPO publications using a script run during releasing which determines which content to push to
the feed.

Motivations

Members of the editorial board of the Journal of Electronic Publishing (collid jep) and
SPO staff have requested that web feed functionality be provided for SPO publications. This
would allow end users to subscribe to feeds of not only serial content (the obvious use) but in
theory any other collection to which content is added, especially on a regular basis. A feed could
provide a single notice that a collection has been updated, perhaps with a table of contents
(henceforth a small feed), or instead contain separate notices for each item added to the
collection (a large feed).

Components of a web feed

A web feed operates with three necessary components:

e awebsite that syndicates (or publishes) a feed

e afeed standard being used by the website

e the end user’s news aggregator (feed reader or news reader), which retrieves the feed

periodically.

A feed is an XML document containing individual entries (also items, stories, or

articles).

Syndicating a feed

The content provider’s website often has buttons (icons called chicklets) to be used by the
end user to add a feed to his or her news aggregator. This feed may be provided in any of a
number of feed standards, and often more than one is available. There are two types of chicklets:

e those that provide a feed’s URL, which can be manually given to a news aggregator

for inclusion

¢ those that, when clicked, add a feed to a news aggregator automatically

There is no standard protocol for adding feeds to a news reader, leading to a proliferation
of chicklets of the second type. Content providers can avoid needing to keep up with the
idiosyncrasies of specific aggregators and avoid using valuable webpage real estate by using a
service such as FeedBurner.* Given a URL of the first type, FeedBurner provides a special page

“ This work is licensed under a Creative Commons Attribution Noncommercial 3.0 United States License. To
request permission to use this content in a way not allowed by the Creative Commons license, contact
copyright@umich.edu. © The Regents of the University of Michigan, 2007.

! <http://www.feedburner.com/>



mailto:copyright@umich.edu

Hawkins 8/12/2008 10:20:40 AM Page 2 of 5

for the content provider’s website with chicklets for various news aggregators. FeedBurner also
provides additional marketing and publicity services.

Feed standards

The two most common web feed formats are RSS 2.0% and Atom 1.0 (the Atom
syndication format or simply Atom).? Both use simple XML schemes, and nearly all aggregators
today support both RSS 2.0 and Atom 1.0.* These standards are compared in detail in
Wikipedia® and by Tim Bray.®

News aggregators

News aggregators are of two types:

e client software aggregators

e web-based aggregators (hosted on websites)

The choice of news aggregator belongs entirely to the end user. Which aggregator is used
by an end user is of no concern to the content provider since nearly all aggregators support both
RSS 2.0 and Atom 1.0.

Relationship to DLXS

Since there are many existing services and software for web feeds, adding web feed
functionality to DLXS would seem relatively straightforward. The web feed could be linked to
from a chicklet on a static HTML page, meaning no changes to DLXS templates would be
required. However, if we want chicklets provided on templates, changes to the DLXS templates
would be required.

Since the feed would be updated at the point of release, a script to update the feed would
operate similar to mkcrawl: in conjunction with releasing yet independent of DLXS
mechanisms.

However, the difficulties for a DLXS implementation lie in determining what information
to provide in the feed. For example, if the feed will consist not simply of a single entry
announcing a new issue of a journal (small feed) but instead will consist of entries for each
article in the latest issue (large feed), then a reliable method for extracting metadata of only the
newly released content needs to be developed. The indexed content
(/11/0bj/c/collid/collid.xml), with appropriate fabregions defined in files at
/11/idx/c/collid/, can serve this purpose for Text Class (including all three
DocEncodingType values), Bib Class, and Findaid Class items. Image Class items, on the
other hand, have their metadata stored only in the Media Table of the MySQL database, so this
would need to be consulted to generate the metadata needed for the large feed.

Feeds usually contain a set number of the most recently updated entries on a particular
website, such as the last ten posts to a blog. At any given time, the small feed should contain
only one entry (the latest one), and the large feed should contain entries for all items added to the
collection in the most recent batch only.

2 See < http://www.rsshoard.org/rss-specification>.

® See < http://www.atomenabled.org/developers/syndication/>.

* See “XML Formats” at <http://www.aggcompare.com/>.

> See <http://en.wikipedia.org/wiki/Atom_%28standard%29#Atom_Compared_to_RSS_2.0>.
® See <http://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared>.



Hawkins 8/12/2008 10:20:40 AM Page 3 of 5

Recommendations

Scope

Web feeds should be offered for all collections, public and restricted. For restricted
collections, authentication would happen only if the user attempts to access the full content.
Consent of content providers to set up large feeds may be needed for these restricted collections.

Since SPO’s greatest need is for Text Class items, web feed functionality should be
implemented for this class first. Two web feeds should be offered for each collection: one
containing one feed entry per collection update, containing a simple notice that content has been
added with a table of contents (small feed), and the other containing one feed entry per item
added to the collection (large feed). The small feed might not be worth providing on a collection
basis since users can find out when a collection is updated by simply subscribing to the large
feed. However, the small feed functionality could be used for a “SPO news items” feed on the
new SPO website instead.

Changes to DLXS templates, as well as scripts used in developing feeds, should be added
to the DLXS code base since it might prove useful to DLPS, DLXS subscribers, or both.

Web feeds should be implemented first in jJep, whose content providers have requested
the functionality, and in phimpz, which release content irregularly and so most needs this
feature.

Chicklets

Initially chicklets on static HTML pages will link to the feeds, but later chicklets will be
added to the navbars or footers of collections. Placement of the chicklets will depend on ease of
coding in DLXS, as determined by the SPO programmers, and on interface design
considerations, in consultation with the DLPS user testing and interface specialist, but will likely
appear in the template navbars or footers. We should use a standard, easily identifiable icon for
chicklets in all collections. The best choice for this is the icon from Mozilla Firefox, distributed
by the Mozilla Foundation under an open-source license and adopted by Microsoft and Opera for
their software.” However, the prevalence of the term RSS for web feeds should be taken into
account in the choice of icon and al t text.

Feed format

Atom 1.0 is the clear choice for feed format. While the RSS formats have been developed
by the user and developer community somewhat haphazardly, Atom 1.0 adheres to various
Internet standards and is itself an IETF standard (RFC 4287°). Since it is nearly as widely
supported as RSS, SPO should implement Atom 1.0 and not an RSS version to adhere to its goal
of compliance with open standards.

In addition, SPO could use FeedBurner for each of its feeds, providing an additional
button from the static HTML to a FeedBurner page for the feed, which would allow users to add
the feed to their aggregator with one click. Using FeedBurner gives SPO additional statistics for
marketing.

" See < http://en.wikipedia.org/wiki/lmage:Feed-icon.svg>.
8 < http://tools.ietf.org/html/rfc4287>



Hawkins 8/12/2008 10:20:40 AM Page 4 of 5

Mechanics
The updating of feeds should be done at the point of releasing content. As with
mkcrawl, it will be most effective to invoke a feed script (mkfeed) from within a collection’s

rdist script. The two feeds would be updated as below.

Small feed

This plan assumes that small feeds will be generated for each collection, but it could
easily be appropriate for a “SPO news items” feed.

The small feed can be generated by consulting a database table with records of when each
collection was last updated:

ID primary key

collid text

updated timestamp (when the collection was last
updated)

For a given collid, mkfeed would check whether the current time is more than a certain
number of hours after the timestamp for this collid. If so, it would leave the same atom: id on
the feed entry element; otherwise, it would create a new value for atom: id, causing
aggregators to retrieve the feed entry. In either case, it should update the timestamp in the
database table with the current time and replace the existing single feed entry in the feed file with
a new feed entry.

This entry should at least give a generic message saying something like “The Scholarly
Publishing Office announces new content available in [collection name].” At most, this one entry
should give the volume, issue number, and date, plus a little table of contents listing each
article’s title and author and, most importantly, a link to the collection’s homepage. Retrieval of
title and author for each article would be accomplished using XPAT fabregion searches, as
described below for the large feed.

This feed entry would be wrapped in Feed element with appropriate child elements.
Then this XML file would be uploaded to the production servers at
/11/web/c/collid/smal lfeed.xml (or another filename).

Large feed
The large feed can be generated by consulting a database table with records of when each
item in a collection was first put online:

ID primary key
1DNO text
collid text (which collid each IDNO belongs to,

in order to disambiguate IDNOs in more
than one collid)

online timestamp (when the items was first put
online)




Hawkins 8/12/2008 10:20:40 AM Page 5 of 5

For a given collid, mkfeed would retrieve a list of IDNOs from
/11/prep/c/collid/idnosOnline.txt. For each IDNO, it would attempt to retrieve a
record from the database table: if the record does not exist, it would create a record with the
current time as the value of the timestamp.® For each IDNO of a newly created record, it would
create a feed entry for the item associated with this IDNO based on XPAT fabregion searches on
the indexed content (col Lid.xml).%° These fabregions are defined in files in
/11/idx/c/coll1d/, where differences in encoding structure among the
DocEncodingType values are not visible.

The feed entry should contain all useful metadata which can be extracted from the
indexed content. For Level 4 items, this would give us reason to begin tagging abstracts
consistently so that a fabregion of abstracts could be constructed for each collection and these
could be included in the feed entries. In addition, the search template in DLXS could make use
of this fabregion as well. For items without abstracts, the first body paragraph might be used
instead, either in the abstract fabregion or in a separate one that would be excluded from DLXS
searches but used to supplement the metadata in the feed entries.

In the end, all new feed entries would be concatenated and wrapped in a feed element
with appropriate child elements. Then this XML file would be uploaded to the production servers
at /11/web/c/collid/largefeed.xml (or another filename).

Once the Unified Bibliographic Database is developed and put into use, it could be used
instead of the database table described above.

® This allows us to determine which items have been added to the collection for the first time. Another option is to
use the idnosOnl ine. txt file, as in the 1 Imc update process. In either case, we have chosen not to attempt
to track the time of last update of a file instead of when it was first put online because doing so would rely on
timestamps on files in /11/prep/, which are unreliable as a source of data. Besides, items are only updated
when we discover errors in them, so this is not something we want to publicize.

1% This method is chosen because there is no more reliable location for metadata about individual texts across the
three types of DocEncodingType in Text Class.



